8 research outputs found

    Fovography: A naturalistic imaging media

    Get PDF
    The aim of our research is to improve the way visual experience is depicted in imaging media by increasing the naturalism of the media. Numerous technical methods for depicting the visual world currently exist. Most of them rely on optical laws that determine the way light rays project onto a plane through an aperture [9]. Physical cameras and computer graphics rendering systems are the most common examples. They are designed to accurately capture or computationally simulate the patterns of light emitted or reflected by objects in the world. The images they produce can be thought of as objectively realistic. However, such images to do not necessarily represent what a human viewer would experience when viewing the same objects; the human visual system is not a camera. While there are some similarities between eyes and cameras, much of what we visually perceive is the result of complex psychological and neurophysiological processing occurring in the visual areas of the brain, for which there is no parallel in current imaging technology [12]. This paper briefly outlines our approach to creating naturalistic imaging media based on the emulation of human visual processes, and how this can improve the way we depict the visual world

    Natural Perspective: Mapping Visual Space with Art and Science

    Get PDF
    Following its discovery in fifteenth-century Italy, linear perspective has often been hailed as the most accurate method of projecting three-dimensional visual space onto a two-dimensional picture plane. However, when we survey the history of European art it is evident that few artists fully complied with its mathematical rules, despite many of them being rigorously trained in its procedures. In this paper, we will consider how artists have actually depicted visual space, and present evidence that images created according to a “natural” perspective (NP) used by artists are judged as better representations of visual space than those created using standard linear (LP) and curvilinear fisheye (FP) projective geometries. In this study, we built a real three-dimensional scene and produced photographs of the scene in three different perspectives (NP, LP and FP). An online experiment in which we asked people to rank the perspectives in order of preference showed a clear preference for NP compared to the FP and LP. In a second experiment, participants were asked to view the real scene and rate each perspective on a range of psychological variables. Results showed that NP was the most preferred and the most effective in depicting the physical space naturally. We discuss the implications of these results and the advantages and limitations of our approach for studying the global metric and geometrical structure of visual space

    Egocentric vision in a 3D game using linear perspective and natural rendering

    No full text
    Humans naturally see the world from an egocentric perspective. But important questions remain about how best to represent this perspective in image media. Most computer graphics engines use linear perspective (LP) to render 3D space. But previous studies suggest that images created using LP do not accurately represent the experience of being in front of a space, particularly for wide fields of view (FOV) where apparent distortions of object size and shape can occur. We report two experiments in which we compared different methods of representing the egocentric viewpoint in a real-time 3D gaming environment. One method was the standard LP projection used by 3D graphics engines, and the other used a novel projective geometry developed by the authors that is based on the natural structure of human vision, called Natural Rendering (NR). Our results showed that participants: 1) preferred to play the game in NR at a wider FOV setting (M=142°) compared to LP (M=115°) and 2) were 4.9 times more likely to estimate a target object’s correct distance and 5.12 times more likely to give an accurate distance estimation if they were looking at NR renders compared to the LP ones. We conclude that NR approximates the perceived structure of the egocentric viewpoint more closely than LP, providing a more immersive and natural experience of virtual environments, and that it might have benefits for 3D computer graphics more generall

    Comparing Artistic and Geometrical Perspective Depictions of Space in the Visual Field

    No full text
    Which is the most accurate way to depict space in our visual field? Linear perspective, a form of geometrical perspective, has traditionally been regarded as the correct method of depicting visual space. But artists have often found it is limited in the angle of view it can depict; wide-angle scenes require uncomfortably close picture viewing distances or impractical degrees of enlargement to be seen properly. Other forms of geometrical perspective, such as fisheye projections, can represent wider views but typically produce pictures in which objects appear distorted. In this study we created an artistic rendering of a hemispherical visual space that encompassed the full visual field. We compared it to a number of geometrical perspective projections of the same space by asking participants to rate which best matched their visual experience. We found the artistic rendering performed significantly better than the geometrically generated projections

    Dynamic Observing and Tiling Strategies for the DESI Legacy Surveys

    Get PDF
    International audienceThe Dark Energy Spectroscopic Instrument Legacy Surveys, a combination of three ground-based imaging surveys, have mapped 16,000 deg2 in three optical bands (g, r, and z) to a depth 1–2 mag deeper than the Sloan Digital Sky Survey. Our work addresses one of the major challenges of wide-field imaging surveys conducted at ground-based observatories: the varying depth that results from varying observing conditions at Earth-bound sites. To mitigate these effects, the Legacy Surveys (the Dark Energy Camera Legacy Survey, or DECaLS; the Mayall z-band Legacy Survey, or MzLS; and the Beiijing-Arizona Sky Survey, or BASS) employed a unique strategy to dynamically adjust the exposure times as rapidly as possible in response to the changing observing conditions. We present the tiling and observing strategies used by the first two of these surveys. We demonstrate that the tiling and dynamic observing strategies jointly result in a more uniform-depth survey that has higher efficiency for a given total observing time compared with the traditional approach of using fixed exposure times

    Overview of the DESI Legacy Imaging Surveys

    Get PDF
    The DESI Legacy Imaging Surveys (http://legacysurvey.org/) are a combination of three public projects (the Dark Energy Camera Legacy Survey, the Beijing–Arizona Sky Survey, and the Mayall z-band Legacy Survey) that will jointly image ≈14,000 deg2 of the extragalactic sky visible from the northern hemisphere in three optical bands (g, r, and z) using telescopes at the Kitt Peak National Observatory and the Cerro Tololo Inter-American Observatory. The combined survey footprint is split into two contiguous areas by the Galactic plane. The optical imaging is conducted using a unique strategy of dynamically adjusting the exposure times and pointing selection during observing that results in a survey of nearly uniform depth. In addition to calibrated images, the project is delivering a catalog, constructed by using a probabilistic inference-based approach to estimate source shapes and brightnesses. The catalog includes photometry from the grz optical bands and from four mid-infrared bands (at 3.4, 4.6, 12, and 22 ÎŒm) observed by the Wide-field Infrared Survey Explorer satellite during its full operational lifetime. The project plans two public data releases each year. All the software used to generate the catalogs is also released with the data. This paper provides an overview of the Legacy Surveys project

    The EChO science case

    Get PDF
    The discovery of almost two thousand exoplanets has revealed an unexpectedly diverse planet population. We see gas giants in few-day orbits, whole multi-planet systems within the orbit of Mercury, and new populations of planets with masses between that of the Earth and Neptune—all unknown in the Solar System. Observations to date have shown that our Solar System is certainly not representative of the general population of planets in our Milky Way. The key science questions that urgently need addressing are therefore: What are exoplanets made of? Why are planets as they are? How do planetary systems work and what causes the exceptional diversity observed as compared to the Solar System? The EChO (Exoplanet Characterisation Observatory) space mission was conceived to take up the challenge to explain this diversity in terms of formation, evolution, internal structure and planet and atmospheric composition. This requires in-depth spectroscopic knowledge of the atmospheres of a large and well-defined planet sample for which precise physical, chemical and dynamical information can be obtained. In order to fulfil this ambitious scientific program, EChO was designed as a dedicated survey mission for transit and eclipse spectroscopy capable of observing a large, diverse and well-defined planet sample within its 4-year mission lifetime. The transit and eclipse spectroscopy method, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allows us to measure atmospheric signals from the planet at levels of at least 10[Superscript: −4] relative to the star. This can only be achieved in conjunction with a carefully designed stable payload and satellite platform. It is also necessary to provide broad instantaneous wavelength coverage to detect as many molecular species as possible, to probe the thermal structure of the planetary atmospheres and to correct for the contaminating effects of the stellar photosphere. This requires wavelength coverage of at least 0.55 to 11 ÎŒm with a goal of covering from 0.4 to 16 ÎŒm. Only modest spectral resolving power is needed, with R ~ 300 for wavelengths less than 5 ÎŒm and R ~ 30 for wavelengths greater than this. The transit spectroscopy technique means that no spatial resolution is required. A telescope collecting area of about 1 m[Superscript: 2] is sufficiently large to achieve the necessary spectro-photometric precision: for the Phase A study a 1.13 m2 telescope, diffraction limited at 3 ÎŒm has been adopted. Placing the satellite at L2 provides a cold and stable thermal environment as well as a large field of regard to allow efficient time-critical observation of targets randomly distributed over the sky. EChO has been conceived to achieve a single goal: exoplanet spectroscopy. The spectral coverage and signal-to-noise to be achieved by EChO, thanks to its high stability and dedicated design, would be a game changer by allowing atmospheric composition to be measured with unparalleled exactness: at least a factor 10 more precise and a factor 10 to 1000 more accurate than current observations. This would enable the detection of molecular abundances three orders of magnitude lower than currently possible and a fourfold increase from the handful of molecules detected to date. Combining these data with estimates of planetary bulk compositions from accurate measurements of their radii and masses would allow degeneracies associated with planetary interior modelling to be broken, giving unique insight into the interior structure and elemental abundances of these alien worlds. EChO would allow scientists to study exoplanets both as a population and as individuals. The mission can target super-Earths, Neptune-like, and Jupiter-like planets, in the very hot to temperate zones (planet temperatures of 300–3000 K) of F to M-type host stars. The EChO core science would be delivered by a three-tier survey. The EChO Chemical Census: This is a broad survey of a few-hundred exoplanets, which allows us to explore the spectroscopic and chemical diversity of the exoplanet population as a whole. The EChO Origin: This is a deep survey of a subsample of tens of exoplanets for which significantly higher signal to noise and spectral resolution spectra can be obtained to explain the origin of the exoplanet diversity (such as formation mechanisms, chemical processes, atmospheric escape). The EChO Rosetta Stones: This is an ultra-high accuracy survey targeting a subsample of select exoplanets. These will be the bright “benchmark” cases for which a large number of measurements would be taken to explore temporal variations, and to obtain two and three dimensional spatial information on the atmospheric conditions through eclipse-mapping techniques. If EChO were launched today, the exoplanets currently observed are sufficient to provide a large and diverse sample. The Chemical Census survey would consist of > 160 exoplanets with a range of planetary sizes, temperatures, orbital parameters and stellar host properties. Additionally, over the next 10 years, several new ground- and space-based transit photometric surveys and missions will come on-line (e.g. NGTS, CHEOPS, TESS, PLATO), which will specifically focus on finding bright, nearby systems. The current rapid rate of discovery would allow the target list to be further optimised in the years prior to EChO’s launch and enable the atmospheric characterisation of hundreds of planets
    corecore